对于数集 X = - 1 , x 1 , x 2 , … , x n ,其中 0 < x x < x 2 < … < x n , n ≥ 2 ,定义向量集 Y = → a → a = s , t , s ∈ X , t ∈ X . 若对于任意 → a 1 ∈ Y ,存在 → a 2 ∈ Y ,使得 → a 1 . → a 2 = 0 ,则称X具有性质 P .例如 X = - 1 , 1 , 2 具有性质 P . (1)若 x > 2 ,且 - 1 , 1 , 2 , x ,求 x 的值; (2)若 X 具有性质 P ,求证: 1 ∈ X ,且当 x n > 1 时, x 1 = 1 ; (3)若 X 具有性质 P ,且 x 1 = 1 , x 2 = q ( q 为常数),求有穷数列 x 1 , x 2 , … , x n 的通项公式.
(本小题满分12分) 已知函数. (1)求函数的最小正周期; (2)当时,求函数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号