设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A,O之间的距离为d。如图1,当r<a时,根据d与a,r之间关系,请你将⊙O与正方形的公共点个数填入下表:
d,a,r之间的关系 |
公共点的个数 |
d>a+r |
0 |
d=a+r |
|
a-r<d<a+r |
|
d=a-r |
|
d<a-r |
|
如图2,当r=a时,根据d与a,r之间关系,请你写出⊙O与正方形的公共点个数,即当r=a时,⊙O与正方形的公共点个数可能有 个。
如图3,当⊙O与正方形的公共点个数有5个时,r= (请用a的代数式表示r,不必说明理由)。
如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.求证:△DMN是等边三角形;
连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;
在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由.
已知二次函数.
当c=-3时,求出该二次函数的图象与x轴的交点坐标;
若-2<x<1时,该二次函数的图象与x轴有且只有一个交点,求c的取值范围.
如图,港口B在港口A的东北方向,上午9时,一艘轮船从港口A出发,以16
海里/时的速度向正东方向航行,同时一艘快艇从港口B出发也向正东方向航行.上午11时轮船到达C处,同时快艇到达D处,测得D处在C处的北偏东60°的方向上,且C、D两地相距80海里,求快艇每小时航行多少海里?(结果精确到0.1海里/时,参考数据:,
,
)
去年寒假期间,学校团委要求学生参加一项社会调查活动,八年级学生小青想了解她所在的小区500户居民家庭月人均收入情况,从中随机调查了一定数量的居民家庭的月人均收入(元)情况,并绘制成如下的频数分布直方图(每组含左端点,不含右端点)和扇形统计图.
请你根据以上不完整的频数分布直方图和扇形统计图提供的信息,解答下列问题:这次共调查了多少户居民家庭的人均收入?扇形统计图中的a=,b= ;.
补全频数分布直方图.