(文)我国是世界上严重缺水的国家之一,城市缺水问题较为突出。某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量的标准。为了确定一个较为合理的标准,必须先了解全市居民日常用水量的分布情况。现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:
(1)分别求出n,a,b的值;
(2)若从样本中月均用水量在[5,6](单位:t)的5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的频率(5位居民的月均用水量均不相等。)
已知函数.
(1)求函数的最小正周期和单调递增区间;
(2)将函数的图像上各点的纵坐标保持不变,横坐标缩短到原来的
,把所得到的图像再向左平移
单位,得到的函数
的图像,求函数
在区间
上的最小值.
((本题16分)
已知函数,其中
,
.
(1)当时,讨论函数
的单调性;
(2)若函数仅在
处有极值,求
的取值范围;
(3)若对于任意的,不等式
在
上恒成立,求
的取值范围.
(、(本题16分)
如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形的形状,使得
都落在抛物线上,点
关于抛物线的轴对称,且
,抛物线的顶点到底边的距离是
,记
,梯形面积为
.
(1)以抛物线的顶点为坐标原点,其对称轴为轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;
(2)求面积关于
的函数解析式,并写出其定义域;
(3)求面积
的最大值.
((本题15分)
已知直线l的方程为,且直线l与x轴交点
,圆
与x轴交
两点.
(1)过M点的直线交圆于
两点,且圆孤
恰为圆周的
,求直线
的方程;
(2)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;(3)过M点作直线
与圆相切于点
,设(2)中椭圆的两个焦点分别为
,求三角形
面积.
((本题15分)
如图,直角三角形的顶点坐标
,直角顶点
,顶点
在
轴上,点
为线段
的中点.
(1)求边所在直线方程;
(2)为直角三角形
外接圆的圆心,求圆
的方程;
(3)直线过点
且倾斜角为
,求该直线被圆
截得的弦长.