(文)我国是世界上严重缺水的国家之一,城市缺水问题较为突出。某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量的标准。为了确定一个较为合理的标准,必须先了解全市居民日常用水量的分布情况。现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:
(1)分别求出n,a,b的值;
(2)若从样本中月均用水量在[5,6](单位:t)的5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的频率(5位居民的月均用水量均不相等。)
根据空气质量指数(为整数)的不同,可将空气质量分级如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量级别 |
一级 |
二级 |
三级 |
四级 |
五级 |
六级 |
空气质量类别 |
优 |
良 |
轻度污染 |
中度污染 |
重度污染 |
严重污染 |
空气质量类别颜色 |
绿色 |
黄色 |
橙色 |
红色 |
紫色 |
褐红色 |
某市年
月
日—
月
日,对空气质量指数
进行监测,获得数据后得到如图的条形图
(1)估计该城市本月(按天计)空气质量类别为中度污染的概率;
(2)在空气质量类别颜色为紫色和褐红色的数据中任取个,求至少有一个数据反映的空气质量类别颜色为褐红色的概率.
设数列是公比为正数的等比数列,
,
.
(1)求数列的通项公式;
(2)设数列是首项为
,公差为
的等差数列,求数列
的前
项和
.
已知,函数
.
(1)当时,讨论函数
的单调性;
(2)当有两个极值点(设为
和
)时,求证:
.
如图,已知是椭圆
的右焦点;圆
与
轴交于
两点,其中
是椭圆
的左焦点.
(1)求椭圆的离心率;
(2)设圆与
轴的正半轴的交点为
,点
是点
关于
轴的对称点,试判断直线
与圆
的位置关系;
(3)设直线与圆
交于另一点
,若
的面积为
,求椭圆
的标准方程.
如图,已知、
、
为不在同一直线上的三点,且
,
.
(1)求证:平面//平面
;
(2)若平面
,且
,
,
,求证:
平面
;
(3)在(2)的条件下,求二面角的余弦值.