(本小题满分10分)
在中,角
所对的边分别为
,且满足
,
.
(1)求的面积; (2)若
,求
的值.
已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若对任意及
时,恒有
成立,求实数
的取值范围.
已知,数列
满足
,数列
满足
;数列
为公比大于
的等比数列,且
为方程
的两个不相等的实根.
(Ⅰ)求数列和数列
的通项公式;
(Ⅱ)将数列中的第
项,第
项,第
项,……,第
项,……删去后剩余的项按从小到大的顺序排成新数列
,求数列
的前
项和.
如图,几何体中,四边形
为菱形,
,
,面
∥面
,
、
、
都垂直于面
,且
,
为
的中点.
(Ⅰ)求证:为等腰直角三角形;
(Ⅱ)求证:∥面
.
从某学校的名男生中随机抽取
名测量身高,被测学生身高全部介于
cm和
cm之间,将测量结果按如下方式分成八组:第一组[
,
),第二组[
,
),…,第八组[
,
],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为
人.
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在
cm以上(含
cm)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件
{
},事件
{
},求
.
已知为
的内角
的对边,满足
,函数
在区间
上单调递增,在区间
上单调递减.
(Ⅰ)证明:;
(Ⅱ)若,证明
为等边三角形.