如图,分别过椭圆E:左右焦点
、
的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.已知当l1与x轴重合时,
,
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标,若不存在,说明理由.
(本小题满分12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验.收集的数据如下:
(I)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(Ⅲ)现需生产20件此零件,预测需用多长时间?
(注:用最小二乘法求线性回归方程系数公式)
(本小题满分12分)动圆C截直线3x-y=0和3x+y=0所得弦长分别为8、4,求动圆圆心C的轨迹方程.
(本小题满分10分)从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题.
(I)在79.5~89.5之间的频率、频数分别是多少?
(Ⅱ)估计这次环保知识竞赛的及格率(60分及以上为及格).
(本小题满分10分)如图,过抛物线上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点
(1)求的值;
(2)若,求
面积的最大值。
(本小题满分10分)如图,已知面积为1的正三角形ABC三边的中点分别为D、E、F,从A,B,C,D,E,F六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)
(1)求;
(2)求E(X)