某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
品种甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品种乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
(1)假设n=2,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
如图, 在平面直角坐标系 中, 已知以 为圆心的圆
及其上一点
(1) 设圆 与 轴相切, 与圆 外切, 且圆心 在直线 上, 求圆 的标准方程;
(2) 设平行于 的直线 与圆 相交于 两点, 且 , 求直线 的方程;
(3) 设点 满足:存在圆 上的两点 和 , 使得 , 求实数 的取值范围。
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱雉 ,下部分的形状是正四棱柱 (如图所示),并要求正四棱柱的高 的四倍.
(1)若 ,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为 ,则当 为多少时,仓库的容积最大?
如图,在直三棱柱 中, 分别为 的中点,点 在侧棱 上, 且
求证:(1)直线 平面 ;
(2) 平面 平面 ;
(1) 求 的长;
;
已知函数 =│ x+1│-│ x-2│.
(1)求不等式 ≥1的解集;
(2)若不等式 ≥ x 2- x+ m的解集非空,求实数 m的取值范围.