某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
品种甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品种乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
(1)假设n=2,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
已知函数(e为自然对数的底数)
(1)求的最小值;
(2)若对于任意的,不等式
恒成立,求实数
的取值范围.
如图甲,是边长为6的等边三角形,
分别为
靠近
的三等分点,点
为边
边的中点,线段
交线段
于点
.将
沿
翻折,使平面
平面
,连接
,形成如图乙所示的几何体.
(1)求证:平面
(2)求四棱锥的体积.
某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校,求抽取的2所学校均为小学的概率.
已知向量,
,设函数
.
(1)求函数的最小正周期;
(2)求函数在区间
上的最小值和最大值.
已知公比不为1的等比数列的前
项和为
,
,且
成等差数列.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.