如图,是底部
不可到达的一个塔型建筑物,
为塔的最高点.现需在对岸测出塔高
,甲、乙两同学各提出了一种测量方法.
甲同学的方法是:选与塔底在同一水平面内的一条基线
,使
三点不在同一
条直线上,测出及
的大小(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),另外需在点
测得塔顶
的仰角(用
表示测量的数据),就可以求得塔高
.
乙同学的方法是:选一条水平基线,使
三点在同一条直线上.在
处分别测得塔顶
的仰角(分别用
表示测得的数据)以及
间的距离(用
表示测得的数据),就可以求得塔高
.
请从甲或乙的想法中选出一种测量方法,写出你的选择并按如下要求完成测量计算:①画出测量示意图;②用所叙述的相应字母表示测量数据,画图时按逆时针方向标注,
按从左到右的方向标注;③求塔高
.
已知函数,
.
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数
的图象关于直线
对称;
证明:当时,
(3)如果且
,证明
设.
(1)求实数a;
(2)求数列{xn}的通项公式;
|
(3)若,求证:b1+b2+…+bn<n+1.
在中,内角
的对边分别为
,已知
(1)求的值;
(2)若求
的面积S。
已知等差数列的前
项和为
,公差
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设是首项为1,公比为3的等比数列,求数列
的前
项和
.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当
桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20
辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度 x的一次函数.
(1)当0≤x≤200时,求函数v (x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)