近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
"厨余垃圾"箱 |
"可回收物"箱 |
"其他垃圾"箱 |
|
厨余垃圾 |
400 |
100 |
100 |
可回收物 |
30 |
240 |
30 |
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在"厨余垃圾"箱、"可回收物"箱、"其他垃圾"箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。
(注:,其中为数据的平均数)
如图,在四棱锥中,
平面
,
,
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求棱锥的高.
已知数列中,点
在直线
上,且
.
(Ⅰ)求证:数列是等差数列,并求
;
(Ⅱ)设,数列
的前
项和为
,
,
成立,求实数
的取值范围.
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这16人的数学成绩编成如下茎叶图.
(Ⅰ)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为122分,试推算这个污损的数据是多少?
(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
在中,
分别是
的对边,
,
,
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.
已知函数
(I)当时,求不等式
的解集;
(Ⅱ)若的解集包含
,求
的取值范围.