游客
题文

近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):


"厨余垃圾"箱
"可回收物"箱
"其他垃圾"箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60

(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在"厨余垃圾"箱、"可回收物"箱、"其他垃圾"箱的投放量分别为a,b,c,其中a>0a+b+c=600.当数据a,b,c,的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值。
(注:s2=1nx-x2+x-x2++x-x2,其中x为数据x1,x2,xn的平均数)

科目 数学   题型 解答题   难度 较易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4-4:坐标系与参数方程
已知在平面直角坐标系内,点在曲线C为参数,)上运动.以为极轴建立极坐标系,直线的极坐标方程为
(Ⅰ)写出曲线C的标准方程和直线的直角坐标方程;
(Ⅱ)若直线与曲线C相交于A、B两点,点M在曲线C上移动,试求面积的
最大值.

(本小题满分10分)选修4-1:几何证明选讲
如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.
(1)求证:
(2)若,试求的大小.

(本小题满分12分)
若函数fx)=在[1,+∞上为增函数.
(Ⅰ)求正实数a的取值范围.
(Ⅱ)若a=1,求征:nN*且n ≥ 2 )

(本小题满分12分)
已知圆上的动点,点Q在NP上,点G在MP上,且满足
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

(本小题满分12分)
如图,在直三棱柱中,是棱上的动点,中点,
(Ⅰ)求证:平面
(Ⅱ)若二面角的大小是,求的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号