近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱。为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
"厨余垃圾"箱 |
"可回收物"箱 |
"其他垃圾"箱 |
|
厨余垃圾 |
400 |
100 |
100 |
可回收物 |
30 |
240 |
30 |
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)试估计厨余垃圾投放正确的概率
(Ⅱ)试估计生活垃圾投放错误的概率
(Ⅲ)假设厨余垃圾在"厨余垃圾"箱、"可回收物"箱、"其他垃圾"箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。
(注:,其中为数据的平均数)
设函数,
.
(Ⅰ)当时,
在
上恒成立,求实数
的取值范围;
(Ⅱ)当时
,若函数
在
上恰有两个不同零点,求实数
的取值范围;
(Ⅲ)是否存在实数,使函数
和函数
在公共定义域上具有相同的单调性?若存在,求出
的值,若不存在,说明理由。
如图,在三棱锥中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:平面
;
(Ⅱ)当为
的中点时,求
与平面
所成的角的余弦值;
(Ⅲ)是否存在点使得二面角
为直二面角?并说明理由.
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部
竞选.
(Ⅰ)设所选3人中女生人数为,求
的分布列及数学期望;
(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.
设的内角
所对的边分别为
且
.(1)求角
的大小;(2)若
,求
的周长
的取值范围.
如图,抛物线(a
0)与双曲线
相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求实数a,b,k的值;
(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.