某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)
(2)
(3)
(4)
(5)
(Ⅰ)试从上述五个式子中选择一个,求出这个常数.
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.
如图所示,已知PA⊥矩形ABCD所在平面,
M,N分别是AB,PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°.求证:MN⊥平面PCD.
如图所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,
(1)求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.
(1)求证:直线MN∥平面PBC;
(2)求线段MN的长.
如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和左视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥平面EFG.
正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.