游客
题文

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1) sin 2 13 ° + cos 2 17 ° - sin 13 ° cos 17 °

(2) sin 2 15 ° + cos 2 15 ° - sin 15 ° cos 15 °

(3) sin 2 18 ° + cos 2 12 ° - sin 18 ° cos 12 °

(4) sin 2 - 18 ° + cos 2 48 ° - sin 2 - 18 ° cos 2 48 °

(5) sin 2 - 25 ° + cos 2 55 ° - sin 2 - 25 ° cos 2 55 °

(Ⅰ)试从上述五个式子中选择一个,求出这个常数.
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.

科目 数学   题型 解答题   难度 较易
知识点: 合情推理和演绎推理
登录免费查看答案和解析
相关试题

如图所示,已知PA⊥矩形ABCD所在平面,
M,N分别是AB,PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°.求证:MN⊥平面PCD.

如图所示,在四棱锥P—ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,
(1)求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.

如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.

(1)求证:直线MN∥平面PBC;
(2)求线段MN的长.

如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和左视图在下面画出(单位:cm).

(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连接BC′,证明:BC′∥平面EFG.

正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号