设曲线 在矩阵 对应的变换作用下得到的曲线为 .
(Ⅰ)求实数
的值
(Ⅱ)求
的逆矩阵
已知函数,
,函数
的图象在点
处的切线平行于
轴.
(1)确定与
的关系;
(2)试讨论函数的单调性;
(3)证明:对任意,都有
成立。
已知函数
(I)若,是否存在a,b
R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数在R上的单调区间;
(III )对于给定的实数成立.求a的取值范围.
已知(
,
是常数),若对曲线
上任意一点
处的切线
,
恒成立,求
的取值范围.
已知函数,函数
是函数
的导函数.
(1)若,求
的单调减区间;
(2)若对任意,
且
,都有
,求实数
的取值范围;
(3)在第(2)问求出的实数的范围内,若存在一个与
有关的负数
,使得对任意
时
恒成立,求
的最小值及相应的
值.
已知,
,且直线
与曲线
相切.
(1)若对内的一切实数
,不等式
恒成立,求实数
的取值范围;
(2)当时,求最大的正整数
,使得对
(
是自然对数的底数)内的任意
个实数
都有
成立;
(3)求证:.