某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
分组 |
频数 |
频率 |
[80,90) |
x |
0.04 |
[90,100) |
9 |
y |
[100,110) |
z |
0.38 |
[110,120) |
17 |
0.34 |
[120,130] |
3 |
0.06 |
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率.
已知函数,
.求:
(I)求函数的最小正周期和单调递增区间;
(II)求函数在区间
上的值域.
已知,
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)若在
处有极值,求
的单调递增区间;
(Ⅲ)是否存在实数,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
在中,角
所对的边分别为
,且
,
(1)求,
的值;
(2)若,求
的值.
已知函数
(Ⅰ)求的最小正周期和单调递增区间;
(Ⅱ)求函数在
上的值域.