如图,在底面为平行四边形的四棱柱中,
底面
,
,
,
.
(Ⅰ)求证:平面平面
;
(Ⅱ)若,求四棱锥
的体积.
设各项均为正数的数列的前
项和为
,满足
且
恰好是等比数列
的前三项.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,
恒成立,求实数
的取值范围.
某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
![]() |
7 |
7 |
7.5 |
9 |
9.5 |
![]() |
6 |
![]() |
8.5 |
8.5 |
![]() |
由于表格被污损,数据看不清,统计员只记得
,且
两种元件的检测数据的平均值相等,方差也相等.
(Ⅰ)求表格中与
的值;
(Ⅱ)若从被检测的5件种元件中任取2件,求2件都为正品的概率.
已知函数,
的最大值为2.
(Ⅰ)求函数在
上的值域;
(Ⅱ)已知外接圆半径
,
,角
所对的边分别是
,求
的值.
在平面直角坐标系中,已知
分别是椭圆
的左、右焦点,椭圆
与抛物线
有一个公共的焦点,且过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点是椭圆
在第一象限上的任一点,连接
,过
点作斜率为
的直线
,使得
与椭圆
有且只有一个公共点,设直线
的斜率分别为
,
,试证明
为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作,设
交
于点
,
证明:当点在椭圆上移动时,点
在某定直线上.