游客
题文

设函数(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)有三个不同的实数解,求的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 组合几何
登录免费查看答案和解析
相关试题

已知函数,,)的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为

(1)求函数的解析式;
(2)若锐角满足,求的值.

已知
(1)求的极值,
并证明:若
(2)设,且
证明:
,由上述结论猜想一个一般性结论(不需要证明);
(3)证明:若,则

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求的值;
(3)直线交椭圆两不同点,轴的射影分别为,若点满足,证明:点在椭圆上.

设函数
(1)求f(x)≤6 的解集
(2)若f(x)≥m对任意x∈R恒成立,求m的范围。

设直线的参数方程为(t为参数),若以直角坐标系点为极点,轴为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为ρ=
(1)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线与曲线交于AB两点,求.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号