设函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)有三个不同的实数解,求的取值范围.
(本小题满分12分) 设函数,已知是奇函数。 (1)求、的值。 (2)求的单调区间与极值。
设命题:在区间上是减函数;命题:是方程的两个实根,不等式对任意实数恒成立;若为真,试求实数的取值范围。
设。 (Ⅰ)若在其定义域内为单调递增函数,求实数的取值范围; (Ⅱ)设,且,若在上至少存在一点,使得成立,求实数的取值范围。
设为正实数,,,。 (Ⅰ)如果,则是否存在以为三边长的三角形?请说明理由; (Ⅱ)对任意的正实数,试探索当存在以为三边长的三角形时的取值范围。
已知等比数列,公比为,,。 (Ⅰ)求的通项公式; (Ⅱ)当,求证:。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号