某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=.假定该产品生产销售平衡,那么根据上述统计规律.
(1)要使工厂有盈利,产量x应控制在什么范围?
(2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少元?
以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:
,曲线C2的参数方程为:
,点N的极坐标为
.
(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;
(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.
如图,已知圆⊙O1与圆⊙O2外切于点P,过点P的直线交圆⊙O1于A,交圆⊙O2于B,AC为圆⊙O1直径,BD与⊙O2相切于B,交AC延长线于D.
(Ⅰ)求证:;
(Ⅱ)若BC、PD相交于点M,则.
已知函数.
(Ⅰ)若函数在区间上存在极值,求实数
的取值范围;
(Ⅱ)如果当时,不等式
恒成立,求实数
的取值范围.
已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为
万元,且
(Ⅰ)写出年利润(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大.
如图,在四棱锥中,四边形
是菱形,
,E为PB的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
.