如图,在□ABCD中,过点B作BE⊥CD,垂足为E,连接AE.F为AE上一点,且∠BFE=∠C.试说明:△ABF∽△EAD;
若AB=4,BE=3,AD=3,求BF的长.
(本小题满分9分)如图,在矩形ABCD中,E是CD边上一动点,设DE=x,作AF⊥AE交CB的延长线于点F.
(1)当点E不与点C,D重合时,求证:△ADE∽△ABF;
(2)连接EF,M为EF的中点,AB=4,AD=2, 当点E从D运动到C的过程中
①点M经过的路径是()
A.直线 | B.线段 | C.射线 | D.圆弧 |
②求点M经过的路径的长;
③连接BM,直接写出BM的长度的最小值.
(本小题满分8分)某技工培训中心有钳工20名、车工30名. 现将这50名技工中的15人派往A地工作,35人派往B地工作,两地技工的工资情况如下表:
工种 属地 |
钳工 |
车工 |
![]() |
1800(元/月) |
1600(元/月) |
![]() |
1600(元/月) |
1200(元/月) |
设派往A地x名钳工时,这50名技工的月工资总额为y元.
(1)派往B地___________名钳工,派往B地___________名车工;
(2)求y关于x的函数关系式;
(3)若A地钳工的月工资总额不小于B地钳工的月工资总额,派往A地多少名钳工,可使这50名技工的月工资总额最高?
(本小题满分7分)如图,已知半径为2的⊙O与直线相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线
的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4)
(1)当时,求弦PA、PB的长度;
(2)当x为何值时,的值最大?最大值是多少?
(本小题满分6分)如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD与AB之间的距离;
(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米?
(参考数据:sin67°≈,cos67°≈
,tan67°≈
,sin37°≈
,cos37°≈
,tan37°≈
)
(本小题满分6分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.
(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.
①求点B的坐标及k的值;
②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于;
(2)直线y=kx+4(k≠0)与x轴交于点E(,0),若-2<
<-1,求k的取值范围.