12分)
要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩记录同学甲击中目标的环数为X1的分布列为
X1 |
5 |
6 |
7 |
8 |
9 |
10 |
P |
0.03 |
0.09 |
0.20 |
0.31 |
0.27 |
0.10 |
同学乙击目标的环数X2的分布列为
X2 |
5 |
6 |
7 |
8 |
9 |
P |
0.01 |
0.05 |
0.20 |
0.41 |
0.33 |
(1)请你评价两位同学的射击水平(用数据作依据);
(2)如果其它班参加选手成绩都在9环左右,本班应派哪一位选手参赛,如果其它班参赛选手的成绩都在7环左右呢?
三、解答题(本大题有5道小题,各小题12分,共60分)
17.在中,
分别是角
的对边,向量
,
,且
.
(1)求角的大小;
(2)设,且
的最小正周期为
,求
在
区间上的最大值和最小值.
(本小题满分12分)
已知函数
(1)求函数的定义域,并证明在定义域上是奇函数;
(2)对于恒成立,求实数
的取值范围;
、(本小题满分12分)
已知等差数列的公差大于0,且
是方程
的两根,数列
的前n项的和为
,且
.
(1)求数列,
的通项公式;
(2)若求数列
的前
项和
.
(本小题满分12分)
在正三棱柱中,底面边长和侧棱都是2,D是侧棱
上任意一点.E是
的中点.
(1)求证:平面ABD;
(2)求证:;
(3)求三棱锥的体积。
(本小题满分12分)
已知集合在平面直角坐标系中,点M的坐标
满足
.
(1)请列出点M的所有坐标;
(2)求点M不在轴上的概率;
(3)求点M正好落在区域上的概率.