本题共有2个小题,第1小题满分6分,第2小题满分8分。已知数列是各项均不为
的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前n项和.
(1)求、
和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围
(本小题满分13分)
甲、乙两人各射击一次,击中目标的概率分别是和
,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?
(本小题满分13分)
设函数,已知
是奇函数.
(Ⅰ)求、
的值;(Ⅱ)求
的单调区间与极值.
(本小题满分13分)
已知的展开式中第五项的系数与第三项的系数的比是10:1
(1)求展开式中各项系数的和;
(2)求展开式中含的项;
(本小题满分13分)
4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字做答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.
已知函数(
为自然对数的底数),
(
为常数),
是实数集
上的奇函数.
(1)求证:;
(2)讨论关于的方程:
的根的个数;
(3)设,证明:
(
为自然对数的底数).