(本小题满分12分)已知函数.
(Ⅰ)如果函数在
上单调递减,求
的取值范围;
(Ⅱ)当时,讨论函数
零点的个数.
(本小题满分12分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)分别求出成绩落在中的学生人数;
(Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在
中的概率.
【原创】(本小题满分12分)在四棱锥中,底面
为菱形,
=
,平面
⊥平面
,
=
=
=2.
(Ⅰ)求证:⊥
;
(Ⅱ)求三棱锥的高.
已知递增等差数列中的
是函数
的两个零点.数列
满足,点
在直线
上,其中
是数列
的前
项和.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)令,求数列
的前n项和
.
【原创】已知函数,
.
(Ⅰ)解关于的不等式
;
(Ⅱ)若函数的图象恒在函数
图象的上方,求
的取值范围.