如图,在四棱锥中,四边形
为平行四边形,
,
,
为
上一点,且
平面
.
⑴求证:;
⑵如果点为线段
的中点,求证:
∥平面
.
某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是
万元,第二年是
万元,第三年是
万元,…,以后逐年递增
万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用
年的维修费用的和为
,年平均费用为
.
(1)求出函数,
的解析式;
(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
已知不等式的解集为
.
(1)求的值;
(2)解关于不等式:
.
已知动圆经过点,且和直线
相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.
已知命题:方程
表示的曲线为椭圆;命题
:方程
表示的曲线为双曲线;若
或
为真,
且
为假,求实数
的取值范围.
已知,
,
,试比较
与
的大小.