(本小题14分)已知函数.
(1)若在
上的最大值为
,求实数
的值;
(2)若对任意,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数
,曲线
上是否存在两点
、
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
在△ABC中,已知a=2,b=,c=
+1,求A
在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
已知数列的前n项和为
,且
=-n
+20n,n∈N
.
(Ⅰ)求通项;
(Ⅱ)设是首项为1,公比为3的等比数列,求数列
的通项公式及其前n项和
.
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y
=1交于P、Q两点,且
(Ⅰ)求∠PDQ的大小;
(Ⅱ)求直线l的方程.
在△ABC中,角A,B,C所对的边分别为a,b,c且满足.
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值,并求取得最大值时角A的大小.