(本小题满分14分)
已知函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)是否存在实数,使
恒成立,若存在,求出实数
的取值范围;若不存在,说明理由.
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5(微克/立方米) |
频数(天) |
频率 |
第一组 |
(0,15] |
4 |
0.1 |
第二组 |
(15,30] |
12 |
0.3 |
第三组 |
(30,45] |
8 |
0.2 |
第四组 |
(45,60] |
8 |
0.2 |
第三组 |
(60,75] |
4 |
0.1 |
第四组 |
(75,90) |
4 |
0.1 |
(Ⅰ)写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(Ⅲ)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求
的分布列及数学期望
.
已知数列的相邻两项
是关于
的方程
的两根,且
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)求数列的前
项和
;
(Ⅲ)设函数若
对任意的
都成立,求
的取值范围。
在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·
=0,求直线l的方程.
已知函数f(x)=x3-x2+bx+c.
(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;
(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.
已知圆C与两坐标轴都相切,圆心C到直线的距离等于
.
(1)求圆C的方程.
(2)若直线与圆C相切,求证: