某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:
|
A |
B |
进价(元/件) |
1200 |
1000 |
售价(元/件) |
1380 |
1200 |
(注:获利 = 售价 — 进价)该商场购进A、B两种商品各多少件;
商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?
如图,抛物线F:的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:
,抛物线F′与x轴的另一个交点为C.
⑴当a = 1,b=-2,c = 3时,求点C的坐标(直接写出答案);
⑵若a、b、c满足了
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.
如图15,在△ABC和△PQD中,AC =" k" BC,DP =" k" DQ,∠C =∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连结EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.
如图14,矩形ABCD中,AB = 6cm,AD = 3cm,点E在边DC上,且DE = 4cm.动点P从点A开始沿着A→B→C→E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t (s),P、Q两点运动路线与线段PQ围成的图形面积为S (cm2),求S与t的函数关系式.
A、B两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A地出发,到达B地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶).
⑴请在图13中画出甲车在这次往返中,距A地的路程y (千米)与时间x (分)的函数图象;
⑵乙车出发多长时间两车相遇?
如图,直线交x轴于点A,交y轴于点B,抛物线
的顶点为A,且经过点B.
⑴求该抛物线的解析式;
⑵若点C(m,)在抛物线上,求m的值.