游客
题文

(本小题满分12分)
已知椭圆C:的离心率为,A,B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)过的直线与椭圆交于P、Q两点,求POQ的面积的最大时直线的方程。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

求证:

如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
⑴判断BE是否平分∠ABC,并说明理由;
⑵若AE=6,BE=8,求EF的长.

在直径是的半圆上有两点,设的交点是.
求证:

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
⑴求动圆圆心P的轨迹方程;
⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.

已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切.
⑴求动圆圆心P的轨迹方程;
⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号