(本小题满分13分)
一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.
(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率;
(Ⅱ)求取出的3个球中恰有2个球编号相同的概率;
(Ⅲ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望.
在直角坐标中,直线
的参数方程为
为参数),以原点为极点,
轴的正半轴为极轴建立极坐标系,
的极坐标方程为
.
(Ⅰ)写出的直角坐标方程;直线
的直角坐标方程
(Ⅱ)为直线
上一动点,当
到圆心
的距离最小时,求点
的坐标.
设,其中
,曲线
在点
处的切线与
轴相交于点
.
(1)确定的值;
(2)求函数的单调区间与极值.
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500 ml以上为常喝,体重超过50 kg为肥胖.
常喝 |
不常喝 |
合计 |
|
肥胖 |
2 |
||
不肥胖 |
18 |
||
合计 |
30 |
已知在这30人中随机抽取1人,抽到肥胖的学生的概率为.
(1)请将上面的列联表补充完整.
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.
(3)现从常喝碳酸饮料且肥胖的学生(其中有2名女生)中,抽取2人参加电视节目,则正好抽到1男1女的概率是多少?
参考数据:
P(K2≥k0) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k0 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
参考公式:K2=,其中n=a+b+c+d.
四棱锥底面是平行四边形,面
面
,
,
,
分别为
的中点.
(1)求证:
(2)求证:
(本小题满分12分)已知数列满足首项为
,
,
.设
,数列
满足
.
(Ⅰ)求证:数列成等差数列;
(Ⅱ)求数列的前
项和
.