设,其中,曲线在点处的切线与轴相交于点. (1)确定的值; (2)求函数的单调区间与极值.
(本小题8分) 数列满足,先计算前4项后,猜想的表达式,并用数学归纳法证明.
已知函数有下列性质:“若,则存在,使得”成立 (I)证明:若,则唯一存在,使得; (II) 设A、B、C是函数图象上三个不同的点,试判断△ABC的形状,并说明理由
已知函数,. (I)求的最值; (II) 设,函数,;若对于任意,总存在,使得成立,求的取值范围
已知函数. (I)求的单调区间; (II) 若在处取得极值,直线与的图象有三个不同的交点,求的取值范围。
已知数列中,(为常数);是的前项和,且是与的等差中项。 (I)求; (II)猜想的表达式,并用数学归纳法加以证明。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号