第26届世界大学生夏季运动会将于2011年11月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望。
已知函数.
(1)求的最大值和最小正周期;
(2)若,
是第二象限的角,求
.
(本小题满分14分)如图,已知圆E:,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹的方程;
(Ⅱ)设直线与(Ⅰ)中轨迹
相交于
两点,直线
的斜率分别为
.△
的面积为
,以
为直径的圆的面积分别为
.若
恰好构成等比数列,求
的取值范围.
(本小题满分14分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是(单位:万元).现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:;
.试分析这两个函数模型是否符合公司要求.
(本小题满分13分)如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:直线平面
;
(Ⅲ)求直线与平面
所成角的余弦值.
(本小题满分12分)已知等比数列满足:
,且
是
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列{an}是单调递增的,令,
,求使
成立的正整数
的最小值.