(本小题满分12分)已知函数 .
(1)讨论函数的单调性;
(2)当时,
恒成立,求实数
的取值范围;
(3)证明:.
已知抛物线和点
,过点P的直线
与抛物线交与
两点,设点P刚好为弦
的中点。
(1)求直线的方程
(2)若过线段上任一
(不含端点
)作倾斜角为
的直线
交抛物线于
,类比圆中的相交弦定理,给出你的猜想,若成立,给出证明;若不成立,请说明理由。
(3)过P作斜率分别为的直线
,
交抛物线于
,
交抛物线于
,是否存在
使得(2)中的猜想成立,若存在,给出
满足的条件。若不存在,请说明理由。
抛物线(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.
(1)若线段AB的垂直平分线交x轴于N(x0,0),比较x0与3p大小;
(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,求+
+…+
的值.
已知的顶点A、B在椭圆
,点
在直线
上,且
(1)当AB边通过坐标原点O时,求的面积;
(2)当,且斜边AC的长最大时,
求AB所在直线的方程。
如图,A,B,C三个观察哨,A在B的正南,两地相距6km,C在B的北偏东60°,两地相距4km.在某一时刻,A观察哨发现某种信号,并知道该信号的传播速度为1km/s;4秒后B,C两个观察哨同时发现这种信号。在以过A,B两点的直线为y轴,以线段AB的垂直平分线为x轴的平面直角坐标系中,指出发了这种信号的地点P的坐标。
在直角坐标系中,点P是曲线C上任意一点,点P到两点
,
的距离之和等于4,直线
与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值。