某小区要建一个面积为500平方米的矩形绿地,四周有小路,绿地长边外路宽5米,短边外路宽9米,怎样设计绿地的长与宽,使绿地和小路所占的总面积最小,并求出最小值。
(本小题满分12分)
在极坐标系中,已知圆C的圆心,半径r=2,Q点在圆C上运动。
(I)求圆C的极坐标方程;
(II)若P在直线OQ上运动,且OQ∶OP=3∶2,求动点P的轨迹方程。
(本小题满分12分)已知点是圆
上的动点,
(1)求的取值范围;
(2)若恒成立,求实数
的取值范围。
(本小题满分12分)
若的展开式中
的系数是
.
(1)求展开式中的常数项;
(2)求的值.
已知等差数列的前
项和为
,且
.
(I)求数列的通项公式;
(II)若数列满足
,求数列
的前
项和.
某小区要建一座八边形的休闲小区,如右图它在主体造型的平面图是由两个相同的矩形和
构成的面积为200平方米的十字形地域。计划在正方形
上建一座花坛,造价每平方米4200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元。
⑴设总造价为元,
长为
米,试求
关于
的函数关系式;
⑵当为何值,
取得最小值?并求出这个最小值.