游客
题文

在直角坐标 x O y 中,圆 C 1 : x 2 + y 2 = 4 ,圆 C 2 : ( x - 2 ) 2 + y 2 = 4 .
(Ⅰ)在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1 , C 2 的极坐标方程,并求出圆 C 1 , C 2 的交点坐标(用极坐标表示);
(Ⅱ)求圆 C 1 , C 2 的公共弦的参数方程.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

用二次项定理证明32n+2-8n-9能被64整除(n∈N).

已知(2-x)50=a0+a1x+a2x2+…+a50x50,其中a0,a1,a2…,a50是常数,计算(a0+a2+a4+…+a50)2-(a1+a3+a5+…+a49)2.

已知n展开式中的二项式系数的和比(3a+2b)7展开式的二项式系数的和大128,求n展开式中的系数最大的项和系数最小的项.

已知的展开式中前三项的系数成等差数列.设=a0+a1x+a2x2+…+anxn.求:
(1)a5的值;
(2)a0-a1+a2-a3+…+(-1)nan的值;
(3)ai(i=0,1,2,…,n)的最大值.

已知(+3x2)n的展开式中,各项系数和比它的二项式系数和大992,求:
(1)展开式中二项式系数最大的项;
(2)展开式中系数最大的项.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号