在直角坐标 x O y 中,圆 C 1 : x 2 + y 2 = 4 ,圆 C 2 : x - 2 2 + y 2 = 4 . (Ⅰ)在以 O 为极点, x 轴正半轴为极轴的极坐标系中,分别写出圆 C 1 , C 2 的极坐标方程,并求出圆 C 1 , C 2 的交点坐标(用极坐标表示); (Ⅱ)求出 C 1 与 C 2 的公共弦的参数方程.
已知函数. (Ⅰ)若a=1,求函数f(x)的极值; (Ⅱ)若f(x)在[1,+∞)内为单调增函数,求实数的取值范围; (Ⅲ)对于,求证:.
已知函数对一切、都有:,并且当时,. (1)判定并证明函数在上的单调性; (2)若,求不等式的解集.
如图,四棱锥中,底面是矩形,底面,,点是侧棱的中点. (Ⅰ)证明:平面; (Ⅱ)若,求二面角的余弦值.
设,. (Ⅰ)化简集合; (Ⅱ)若,求实数的取值范围.
已知:关于的方程有两个不相等的负实根;:关于的不等式的解集为. 若为真,为假,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号