如图1,
,过动点
作
,垂足
在线段
上且异于点
,连接
,沿
将
折起,使
(如图2所示).
(Ⅰ)当
的长为多少时,三棱锥
的体积最大;
(Ⅱ)当三棱锥
的体积最大时,设点
分别为棱
的中点,试在棱
上确定一点
,使得
,并求
与平面
所成角的大小.
已知函数,其中
是自然对数的底数,
.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数
的最小值.
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH//平面AEF;
(Ⅲ)求多面体ABCDEF的体积.
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.
已知函数,
,且
的最小正周期为
.
(Ⅰ)若,
,求
的值;
(Ⅱ)求函数的单调增区间.
设无穷等比数列的公比为q,且
,
表示不超过实数
的最大整数(如
),记
,数列
的前
项和为
,数列
的前
项和为
.
(Ⅰ)若,求
;
(Ⅱ)若对于任意不超过的正整数n,都有
,证明:
.
(Ⅲ)证明:(
)的充分必要条件为
.