已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为
万元,且
(1)写出年利润W(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
如图,平面
,四边形
是正方形,
,点
、
、
分别为线段
、
和
的中点.
(1)求异面直线与
所成角的余弦值;
(2)在线段上是否存在一点
,使得点
到平面
的距离恰为
?若存在,求出线段
的长;若不存在,请说明理由.
已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为
.
(1)求函数的解析式;(2)求函数
的单调区间
已知命题p:关于的不等式
对一切
恒成立,命题q:函数
是增函数,若p或q为真,p且q为假,求实数
的取值范围.
(本小题满分14分)已知函数,其中
为常数.
(Ⅰ)当时,
恒成立,求
的取值范围;
(Ⅱ)求的单调区间.