乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。
(I)求开球第4次发球时,甲、乙的比分为1比2的概率;
(II)求开始第5次发球时,甲得分领先的概率。
已知命题,
,命题
,使得
.若“
或
为真”,“
且
为假”,求实数
的取值范围.
已知函数的导函数
是二次函数,当
时,
有极值,且极大值为2,
.
(1)求函数的解析式;
(2)有两个零点,求实数
的取值范围;
(3)设函数,若存在实数
,使得
,求
的取值范围.
已知等比数列的首项
,公比
,设数列
的通项公式
,数列
,
的前
项和分别记为
,
,试比较
与
的大小.
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.
(1)当=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.
如图给定两个长度为1的平面向量和
,它的夹角为
,点
在以
为圆心的圆弧
上变动,若
,其中
,求
的最大值.