如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?
已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.
(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。(友情提醒:注意考虑P、Q的位置)
(1)如图1,正方形ABCD和CEFG的边长分别为m、n,用含m、n的代数式表示△AEG的面积。
(2)如图2,正方形ABCD和CEFG的边长分别为m、n,用含m、n的代数式表示△DBF的面积。
(3)如图,正方形ABCD、正方形CEFG和正方形MNHF的位置如图所示,点G在线段AN上,已知正方形CEFG的边长为6,则△AEN的面积为(请直接写出结果,不需要过程)
某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套。如果每套比原销售价降低10元销售,则每天可多销售100套。该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价-每套西服的进价).
1、按原销售价销售,每天可获利润元。
2、若每套降低10元销售,每天可获利润元。
3、如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套。按这种方式: 若每套降低10x元
(1)每套的销售价格为元;(用代数式表示)
(2)每天可销售套西服。(用代数式表示)
(3)每天共可以获利润元。(用代数式表示)
已知,
,
(1)求
(2)当满足
时,请你求出(1)中的代数式的值。
化简:(每小题4分,共12分)
(1);
(2)
(3)先化简再求值2(3b2-a3b)-3(2b2-a2b-a3b)-4a2b,其中a=-,b=8.