游客
题文

如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位: kW h ) 调查,按月用电量 50 ~ 100 100 ~ 150 150 ~ 200 200 ~ 250 250 ~ 300 300 ~ 350 进行分组,绘制频数分布直方图如图.

(1)求频数分布直方图中 x 的值;

(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);

(3)设各组居民用户月平均用电量如表:

组别

50 ~ 100

100 ~ 150

150 ~ 200

200 ~ 250

250 ~ 300

300 ~ 350

月平均用电量(单位: kW h )

75

125

175

225

275

325

根据上述信息,估计该市居民用户月用电量的平均数.

如图,圆 O 中两条互相垂直的弦 AB CD 交于点 E

(1) M CD 的中点, OM = 3 CD = 12 ,求圆 O 的半径长;

(2)点 F CD 上,且 CE = EF ,求证: AF BD

)已知正比例函数 y = kx ( k 0 ) 与反比例函数 y = 6 x 的图象都经过点 A ( m , 2 )

(1)求 k m 的值;

(2)在图中画出正比例函数 y = kx 的图象,并根据图象,写出正比例函数值大于反比例函数值时 x 的取值范围.

某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.

[ 观察思考 ]

当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图 2 ) ;当正方形地砖有2块时,等腰直角三角形地砖有8块(如图 3 ) ;以此类推.

[ 规律总结 ]

(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加    块;

(2)若一条这样的人行道一共有 n ( n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为   (用含 n 的代数式表示).

[ 问题解决 ]

(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?

学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形 AEFD 为矩形,点 B C 分别在 EF DF 上, ABC = 90 ° BAD = 53 ° AB = 10 cm BC = 6 cm .求零件的截面面积.参考数据: sin 53 ° 0 . 80 cos 53 ° 0 . 60

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号