若数列满足
,其中
为常数,则称数列
为等方差数列,已知等方差数列
满足
,
.
(1)求数列的通项公式;
(2)求数列的前
项和;
(3)记,则当实数
大于4时,不等式
能否对于一切的
恒成立?请说明理由。
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直. 点M在AC上移动,点N在BF上移动,若CM=BN=.
(1)求MN的长;
(2)当a为何值时,MN的长最小;
(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.
用数学归纳法证明等式对所以n∈N*均成立.
已知命题:复数
对应的点落在复平面的第二象限;命题
:以
为首项,公比为
的等比数列的前
项和极限为2.若命题“
且
”是假命题,“
或
”是真命题,求实数
的取值范围.
1)设≤1,求一个正常数a,使得x≤
;
(2)设≤1,
,求证:
≤
如图:空间四边形中,点
分别是
的中点.设
(1)用表示向量
.
(2)若,且
与
、
夹角的余弦值均为
,
与
夹角为600,求