游客
题文

如图,在圆内画条线段,将圆分割成两部分;画条相交线段,彼此分割成条线段,将圆分割成部分;画条线段,彼此最多分割成条线段,将圆最多分割成部分;画条线段,彼此最多分割成条线段,将圆最多分割成部分.
       
(1)猜想:圆内两两相交的条线段,彼此最多分割成多少条线段?
(2)记在圆内画条线段,将圆最多分割成部分,归纳出的关系.
(3)猜想数列的通项公式,根据的关系及数列的知识,证明你的猜想是否成立.

科目 数学   题型 解答题   难度 较易
知识点: 第二数学归纳法
登录免费查看答案和解析
相关试题

F1F2分别为椭圆C=1(ab>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若MN是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.

已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且
(1)求动点的轨迹的方程;
(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

已知椭圆C:,两个焦点分别为,斜率为k的直线过右焦点且与椭圆交于A、B两点,设与y轴交点为P,线段的中点恰为B。
(1)若,求椭圆C的离心率的取值范围。
(2)若,A、B到右准线距离之和为,求椭圆C的方程。

设函数
(I)若是函数的极大值点,求的取值范围;
(II)当时,若在上至少存在一点,使成立,求的取值范围.

已知数列中,是它的前项和,并且.
(Ⅰ)设,求证是等比数列(Ⅱ)设,求证是等差数列;
(Ⅲ)求数列的通项公式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号