已知向量,函数
(Ⅰ)求函数
的最小正周期
;(Ⅱ)将函数
的图像向左平移
上个单位后,再将所得图像上所有点的横坐标伸长为原来的3倍,得到函数
的图像,求函数
的解析式及其对称中心坐标.
已知等差数列的前
项和为
,且
(Ⅰ)求数列的通项
;(Ⅱ)设
,求数列
的前
项和
如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.
已知函数f(x)=lnx-ax-3(a≠0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],函数在区间(a,3)上有最值,求实数m的取值范围.
已知数列{bn}是等差数列, b1="1," b1+b2+b3+…+b10=100.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{an}的通项记Tn是数列{an}的前n项之积,即Tn= b1·b 2·b 3…bn,试证明: