.(本小题满分12分)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高频数分布表[来
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
频数 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求该校男生的人数并完成下面频率分布直方图;
(II)估计该校学生身高在的概率;
(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185
190cm之间的概率。
(本小题满分10分,矩阵与变换)
已知矩阵,
,若矩阵
对应的变换把直线
变为直线
,求直线
的方程.
(本小题满分10分,几何证明选讲)
如图,与圆
相切于点
,
是
的中点,过点
引圆
的割线,与圆
相交于点
,连结
.
求证:.
已知函数,
.
(1)若函数在
上单调递增,求实数
的取值范围;
(2)若直线是函数
图象的切线,求
的最小值;
(3)当时,若
与
的图象有两个交点
,求证:
.
(取为
,取
为
,取
为
)
数列,
,
满足:
,
,
.
(1)若数列是等差数列,求证:数列
是等差数列;
(2)若数列,
都是等差数列,求证:数列
从第二项起为等差数列;
(3)若数列是等差数列,试判断当
时,数列
是否成等差数列?证明你的结论.
如图,在平面直角坐标系中,离心率为
的椭圆
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
两点.若直线
斜率为
时,
.
(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.