游客
题文

.(本小题满分12分)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表

身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190)
频数
2
5
14
13
4
2

 
表2:女生身高频数分布表[来

身高(cm)
[150,155)
[155,160)
[160,165)
[165,170)
[170,175)
[175,180)
频数
1
7
12
6
3
1

(I)求该校男生的人数并完成下面频率分布直方图;

(II)估计该校学生身高在的概率;
(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。

科目 数学   题型 解答题   难度 容易
知识点: 变量间的相关关系
登录免费查看答案和解析
相关试题

已知
(1)若曲线处的切线与直线平行,求a的值;
(2)当时,求的单调区间.

如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:
(3)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号