游客
题文

直角梯形ABCD中,AD∥BC,AB=AD=3,边BC, AB分别在x轴和y轴上,已知点C的坐标分别为(4,0)。动点P从B点出发,以每秒1个单位的速度沿BC方向作匀速直线运动,同时点Q从D点出发,以与P点相同的速度沿DA方向运动,当Q点运动到A点时, P,Q两点同时停止运动。设点P运动时间为t,
(1)求线段CD的长。
(2) 连接PQ交直线AC于点E,当AE : EC="1" : 2时,求t的值,并求出此时△PEC的面积。
(3) 过Q点作垂直于AD的射线交AC于点M,交BC于点N,连接PM,
①是否存在某一时刻,使以M、P、C三点为顶点的三角形是等腰三角形?若存在 ,求出此时t的值;若不存在,请说明理由;
②当t=          时,点P、M、D在同一直线上。(直接写出)



备用图

 

 



科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)若直线MN上存在点P,使得PA+PB的值最小,请直接写出PA的长度.

如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.
(1)求证:AB=AC;
(2)若AD=4,cos∠ABF=,求DE的长.

如图,在平行四边形ABCD中,E为BC边上的一点,连接AE、BD交于点F,AE=AB.
(1)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
(2)若AB=10,BE=2EC,求EF的长.

某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.
请你根据不完整的表格,回答下列问题:

成绩x
频数
频率
50≤x<60
10
____
60≤x<70
16
0.08
70≤x<80
____
0.20
80≤x<90
62
____
90≤x<100
72
0.36

(1)补全频数分布直方图;

(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?

列方程或方程组解应用题:
某停车场的收费标准如下:中型汽车的停车费为每辆6元,小型汽车的停车费为每辆4元. 现在停车场有中、小型汽车共50辆,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号