如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
把命题改写成”如果…那么…”的形式.
(1)对顶角相等.
(2)两直线平行,同位角相等.
(3)等角的余角相等.
命题:若a>b,则.
(1)请判断这个命题的真假.若是真命题请证明;若是假命题,请举一个反例;
(2)请你适当修改命题的题设使其成为一个真命题.
如图,抛物线y=mx2―2mx―3m(m>0)与x轴交于A、B两点, 与y轴交于C点。
(1)请求抛物线顶点M的坐标(用含m的代数式表示),A,B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
如图所示,已知正方形ABCD中,BE平分且交CD边于点E。将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G。
(1)求证:△BDG∽△DEG;
(2)若EG·BG=4,求BE的长。
如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3。
(1)求证:AC是⊙O的切线;
(2)求线段AC的长。