(本题满分l4分)已知向量,且
,其中
是
的三内角,
分别是角
的对边.
(1)求角的大小;(2)求
的取值范围.
已知函数(
).
(1)求的单调递增区间;
(2)在锐角三角形中,
、
、
分别是角
、
、
的对边,若
,
,
的面积为
,求
的值.
设数列满足
,且对任意
,函数
满足
,若
,则数列
的前
项和
为.
函数.
(1)若,求函数
的定义域
;
(2)设,当实数
时,证明:
.
在平面直角系中,已知曲线
为参数
,将
上的所有点的横坐标、纵坐标分别伸长为原来的
和2倍后得到曲线
.以平面直角坐标系
的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标,已知直线
.
(1)试写出曲线的极坐标方程与曲线
的参数方程;
(2)在曲线上求一点P,使点到直线
的距离最小,并求此最小值.
已知为半圆
的直径,
,
为半圆上一点,过点
作半圆的切线
,过
点作
于
,交半圆于点
,
.
(1)证明:平分
;
(2)求的长.