如图,直线y=kx+b与反比例函数只有一个交点A(1 , 2),且与x轴、y轴分别交于B,C两点,AD垂直平分OB,垂足为D,
(1)求点B的坐标和m的值;
(2)求直线解析式
(1)解不等式:(2)解方程:
计算:
(1)(2)
如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A
点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G。
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等
腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当P点运动时,
线段EG的长度是否发生改变,请说明理由。
(本小题满分8分)如图,抛物线交x轴于A、B两点,顶点为C,经过A、B、C三点的圆的圆心为M.
⑴ 求圆心M的坐标;
⑵ 求⊙M上劣弧AB的长;
⑶ 在抛物线上是否存在一点D,使线段OC和MD互相平分?若存在,直接写出点D的坐标,若不存在,请说明理由.
(本小题满分8分)
为创建丹阳生态城市,实现城市生活垃圾减量化、资源化、无害化的目标,我市决定在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
类型 |
占地面积/m2 |
可供使用幢数 |
造价(万元) |
A |
15 |
18 |
1.5 |
B |
20 |
30 |
2.1 |
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼.
(1)满足条件的建造方案共有几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.