对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) |
[15,25![]() |
[25,35![]() |
[35,45![]() |
[45,55![]() |
[55,65![]() |
[65,75![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策” 的态度有差异?
|
月收入不低于55百元的人数 |
月收入低于55百元的人数 |
合计 |
赞成 |
![]() |
![]() |
|
不赞成 |
![]() |
![]() |
|
合计 |
|
|
50 |
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人赞成“楼市限购政策”的概率.
(参考公式:,其中
.)
参考值表:
P(![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分16分)已知函数(a>0,且a≠1),其中为常数.如果
是增函数,且
存在零点(
为
的导函数).
(Ⅰ)求a的值;(Ⅱ)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,(
为
的导函数),证明:
.
(本小题满分16分)已知圆:
交
轴于
两点,曲线
是以
为长轴,直线:
为准线的椭圆.(1)求椭圆的标准方程;(2)若
是直线上的任意一点,以
为直径的圆
与圆
相交于
两点,求证:直线
必过定点
,并求出点
的坐标;(3)如图所示,若直线
与椭圆
交于
两点,且
,试求此时弦
的长.
(本小题满分16分)某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天.(Ⅰ)写出n关于x的函数关系式;(Ⅱ)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).
(本小题满分14分) 已知数列是一个公差大于0的等差数列,且满足
(1)求数列
的通项公式;(2)数列
和数列
满足等式
,求数列
的前n项和Sn。
(本小题满分14分)已知直三棱柱中,
为等腰直角三角形,
,且
,
分别为
的中点,
(1)求证://平面
;
(2)求证:平面
;
(3)求三棱锥E-ABF的体积。