已知:在△AOB与△COD中,OA=OB,OC=OD,.
(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是,位置关系是;
(2)如图2,将图1中的△COD绕点逆时针旋转,旋转角为
(
).连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;
(3)如图3,将图1中的 △COD绕点 O逆时针旋转到使 △COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.
请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.
在平面直角坐标系xOy中,抛物线经过原点O, 点B(-2,n)在这条抛物线上.
(1)求抛物线的解析式;
(2)将直线沿y轴向下平移b个单位后得到直线l, 若直线l经过B点,求n、b的值;
(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.
如图1,矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.在图2、图3中,四边形ABCD为矩形,且
,
.
(1)在图2、图3中,点E、F分别在BC、CD边上,图2中的四边形EFGH是利用正方形网格在图上画出的矩形ABCD的反射四边形.请你利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH;
(2)图2、图3中矩形ABCD的反射四边形EFGH的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的周长各是多少;
(3)图2、图3中矩形ABCD的反射四边形EFGH的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的面积各是多少.
某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.
表1阅读课外书籍人数分组统计表
分组 |
阅读课外书籍时间n(小时) |
人数 |
A |
0≤n<3 |
3 |
B |
3≤n<6 |
10 |
C |
6≤n<9 |
a |
D |
9≤n<12 |
13 |
E |
12≤n<15 |
b |
F |
15≤n<18 |
c |
请你根据以上信息解答下列问题:
(1)这次共调查了学生多少人?E组人数在这次调查中所占的百分比是多少?
(2)求出表1中a的值,并补全图1;
(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.
如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC .
(1)求证:CD是⊙O的切线;
(2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB =2,求 OE和CF的长.