如图,已知直线、
交于点
,
平分
,若
,
求的度数.
如图,∠1=∠2,∠C=∠D.∠A与∠F有怎样的数量关系?请说明理由.
已知2x+5y-3=0,求的值.
作图:
(1)画出图中△ABC的高AD(标注出点D的位置);
(2)画出把△ABC沿射线AD方向平移2cm后得到的△A1B1C1;
(3)根据“图形平移”的性质,得BB1=cm,AC与A1C1的关系是:.
如图,经过原点的抛物线与
轴的另一个交点为A.过点
作直线
轴于点M,交抛物线于点B,过点B作直线BC∥
轴与抛物线交于点C(B、C不重合),连结CP.
(1)当时,求点A的坐标及BC的长;
(2)当时,连结CA,问
为何值时
?
(3)过点P作且
,问是否存在
,使得点E落在坐标轴上?若存在,求出所有满足要求的
的值,并求出相对应的点E坐标;若不存在,请说明理由.
如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连结AC,DB.设CP=x,PD=y.
(1)求证:△ACP∽△DBP;
(2)求y关于x的函数解析式;
(3)若CD=8时,求S△ACP:S△DBP的值.