试用分析法证明不等式
已知函数
(I) 解关于的不等式
;
(II)若函数的图象恒在函数
的上方,求实数
的取值范围。
以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线
过点P,且倾斜角为
,圆C以M为圆心,4为半径。
(I)求直线的参数方程和圆C的极坐标方程;
(II)试判定直线与圆C的位置关系。
如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,
垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。
(I)求证:∠PFE=∠PAB;
(II)求证:CD2=CF·CP.
已知函数
(Ⅰ)当时, 求函数
的单调增区间;
(Ⅱ)求函数在区间
上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设,
证明:.参考数据:
.
平面内与两定点连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论
的形状与
值的关系;
(Ⅱ)当时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.