甲乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中三人答对的概率分别为,且各人回答得正确与否相互之间没有影响.(1)若用表示甲队的总得分,求随机变量分布列和数学期望;(2)用表示事件“甲、乙两队总得分之和为”,用表示事件“甲队总得分大于乙队总得分”,求.
半径为的球的内接圆柱,问圆柱的底半径与高多大,才能使圆柱的体积最大。
在△ABC中,角A,B,C的对边分别是,且。 (1)求的值;(2)若,求的最大值。
求过点(1,2)且与曲线相切的直线方程。
求由抛物线与它在点A(0,-3)和点B(3,0)的切线所围成的区域的面积。
已知函数=. (1)若在(-∞,+∞)上是增函数,求a的取值范围. (2) 若在x=x1及x=x2 (x1, x2>0)处有极值,且1<≤5,求a的取值范围。12分
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号