已知:圆C:x2+(y-a)2=a2(a>0),动点A在x轴上方,圆A与x轴相切,且与圆C外切于点M
(1)若动点A的轨迹为曲线E,求曲线E的方程;
(2)动点B也在x轴上方,且A,B分别在y轴两侧.圆B与x轴相切,且与圆C外切于点N.若圆A,圆C,圆B的半径成等比数列,求证:A,C,B三点共线;
(3)在(2)的条件下,过A,B两点分别作曲线E的切线,两切线相交于点T,若的最小值为2,求直线AB的方程.
已知函数f(x)=ax2+bln x在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
5 |
||
女生 |
10 |
||
合计 |
50 |
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
袋中装有编号为的球
个,编号为
的球
个,这些球的大小完全一样。
(1)从中任意取出四个,求剩下的四个球都是号球的概率;
(2)从中任意取出三个,记为这三个球的编号之和,求随机变量
的分布列及其数学期望
.
已知的展开式中前三项的系数成等差数列.
(1)求n的值;
(2)求展开式中系数最大的项.
设为三角形
的三边,求证: