在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1,若点O在BC上运动(与B,C不重合)设OB=X,△AOC的面积为Y。
(1)求Y与X的函数关系式,指出自变量X的取值范围;
(2)以点O为圆心,OB长为半径作⊙O,当⊙O与⊙A相切时△AOC的面积。
(本题14分)如图,在平面直角坐标系内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线
过O、C、P三点.
(1)填空:直线的函数解析式为;的关系式是.
(2)当△PBC是等腰Rt△时,求抛物线的解析式 ;
(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标的取值范围.
(本题12分)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,其中甲种图书a本,投入的经费为W元,
①请写出W关于a的函数关系式;
②若投入的经费不超过1050元,且使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案? 并求出最节省的购买方案和最节省经费;
(3)若学校计划购买这两种图书总数超过30本,其中甲种图书a本,乙种图书b本,
且投入的经费恰好为690元,则b=( 写出两种可能的值).
(本题10分)如图,AB是⊙O的直径,PA,PC分别与⊙O 相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E,记∠EPD=∠1,∠EDO=∠2.
(1)求证:∠1=∠2;
(2)若PC=6,tan∠PDA=,求OE的长。
(本题10分)如图,某校综合实践活动小组的同学欲测量公园内一棵树的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端
的仰角为35°,朝着这棵树的方向走到台阶下的点C处,测得树顶端
的仰角为60°.已知点A 的高度AB为
,台阶AC的坡度为
(即
),且
、
、
三点在同一条直线上.请根据以上条件求出树DE的高度(参考数据:tan65°
2.1,cos65°
0.4, sin35°
0.6,tan35°
0.7,
1.7,结果保留一位小数).
(本题8分)如图,在□ABCD中,、
是
、
的中点,
、
的延长线分别交
、
的延长线于
、
;
(1)求证:BH=AB;
(2)若四边形为菱形,试判断
与
的大小,并证明你的结论.