(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为
,甲、丙两台机床加工的零件都是一等品的概率为
.
(Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;
(Ⅱ)若让每台机床各自加工2个零件(共计6个零件),求恰好有3个零件是一等品的概率.
.如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.
(1)判断下列函数是不是“保三角形函数”,并证明你的结论:
①f(x)= ; ②g(x)=sinx (x∈(0,π)).
(2)若函数h(x)=lnx (x∈[M,+∞))是保三角形函数,求M的最小值.
.已知函数,当
时,值域为
,当
时,值域为
,…,当
时,值域为
,….其中a、b为常数,a1=0,b1=1.
(1)若a=1,求数列{an}与数列{bn}的通项公式;
(2)若,要使数列{bn}是公比不为1的等比数列,求b的值
已知抛物线,焦点为F,一直线
与抛物线交于A、B两点,且
,且AB的垂直平分线恒过定点S(6, 0)
①求抛物线方程;
②求面积的最大值.
设一动直线过定点A(2, 0)且与抛物线相交于B、C两点,点
B、C在轴上的射影分别为
, P是线段BC上的点,且适合
,求
的重心Q的轨迹方程,并说明该轨迹是什么图形.
抛物线的焦点弦AB,求
的值.